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TECHNICAL MEMORANDUM

PRELIMINARY IN-FLIGHT LOADS ANALYSIS OF IN-LINE LAUNCH VEHICLES
USING THE VLOADS 1.4 PROGRAM

1. INTRODUCTION

The vehicle loads (VLOADS) program calculates launch vehicle in-flight structural loads for
preliminary design. The program may also be used to calculate structural loads for upper stages and
planetary transfer vehicles. VLOADS is a Visual Basic for Applications (VBA) computer program
which has been integrated into an easy-to-use Microsoft Excel user interface. The VLOADS program
uses the individual Excel worksheets in its Excel workbook as input and output data files, in a manner
that is very similar to the way that more traditional FORTRAN and BASIC programs have used text
files as input and output files in the past. Launch vehicle information and input data such as aerody-
namic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and
analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle
line loads as a function of X-station along the vehicle’s length. Translational accelerations and interface
loads, if the launch vehicle has boosters or wings, are also computed.

VLOADS is a preliminary design tool that enables quick turnaround analysis of structural loads
for launch vehicles, or other vehicles like upper stages and planetary transfer vehicles. VLOADS is as an
alternative to the time-consuming and expensive chore of developing finite element models for detailed
loads analysis. In preliminary design, much remains unknown about the detailed configuration to which
the launch vehicle will mature and it becomes necessary to make some simplifying assumptions to
initiate the process by which structural loads may be calculated for structural design and analysis. The
VLOADS program operates in one vehicle plane at a time. This plane is generally assumed to be the
pitch plane. The rotational acceleration and rotational velocity in this plane are assumed to be zero so
that required unknowns, such as engine thrust in the pitch plane, can be determined. Out-of-plane forces
and moments are ignored. However, a yaw plane loads set can be generated in the same manner as the
pitch plane and the two loads sets combined. Vibrational effects are also not considered in the loads
analysis.

The VLOADS program calculates the axial force, shear force, and bending moment distributions
along the launch vehicle’s length. It essentially treats the launch vehicle as a rigid beam. The Method of
Sections is employed to determine the shear, moment, and axial load at any predetermined station
number.

The assumptions concerning vehicle rotational accelerations of zero and rotational velocities of
zero are necessary because these data cannot be solved for statically and an operating controls system
design is required to produce such data from the flight trajectory. The necessary controls system design
is generally not in place when preliminary loads analysis is needed.



VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 workbook
program on a Power Macintosh. VLOADS has also been implemented on a 486-class PC computer
using Microsoft Excel 7.0a for Microsoft Windows 95. The standard distribution medium for VLOADS
is a 3.5-in. (8.89-cm), 1.44MB diskette in MS—DOS format. Power Macintosh computers are capable
of reading MS-DOS format diskettes; but if there are any problems, a Macintosh-formatted diskette can
be made available. VLOADS was developed in 1996, and the current version was released to COSMIC,
NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all
copyright vested in NASA.

The VLOADS program may be purchased from COSMIC, University of Georgia,
382 East Broad Street, Athens, GA 30602—-4272. COSMIC also has a site on the World Wide Web
at http://www.cosmic.uga.edu/.



2. LOADS ANALYSIS METHODOLOGY IN VLOADS

VLOADS is a preliminary design tool that enables quick turnaround analysis of structural loads
for launch vehicles, or other vehicles like upper stages and planetary transfer vehicles. VLOADS is an
alternative to the time-consuming and expensive chore of developing finite element models for detailed
loads analysis. In preliminary design, much remains unknown about the detailed configuration to which
the launch vehicle will mature and it becomes necessary to make some simplifying assumptions to
initiate the process by which structural loads may be calculated for preliminary structural design and
analysis.

2.1 Assumptions

The VLOADS program operates in one vehicle plane at a time. This plane is generally assumed
to be the pitch plane. The rotational acceleration and rotational velocity in this plane are assumed to be
zero so that required unknowns, such as engine thrust in the pitch plane, can be determined. Out-of-
plane forces and moments are ignored, and vibrational effects are also not considered in the loads analy-
sis. The VLOADS program calculates the axial force, shear force, and bending moment distributions
along the launch vehicle’s length. It essentially treats the launch vehicle as a rigid beam. Figure 1 shows
a free body diagram for a generic launch vehicle. Appendix A also includes a chart showing the free
body diagram and the sum of force equations for the launch vehicle. Note that the X coordinate must
increase positively from aft to nosecone.

*
If two boosters, they are assumed to be Mass * Gz The direction of the arrows
attached at (x,y,z) = (x ,x y booster,0) is dependent on the specific
loads for a particular vehicle.
Cp
1 Mass * Gx Fwd |_x
Thrust_x -
- [ -~ 2 = »x
N / \¢o- f Axis
Drag
Thrust_z
Normal Force
Z Axis \ Aft1_z Fwd |_z = -CNV*qg*alpha*Area
Pitch Moment Myy 2D Simplifications:
/‘ | F=0
Axial Roll Moment Mxx =0
Fx, Nc, Nt Yaw Moment Mzz =0
Shear Fz

Figure 1. Free body diagram of a generic launch vehicle.



The Method of Sections is employed to determine the shear, moment, and axial loads at any
predetermined station number. The rotational acceleration and rotational velocity in the pitch plane are
set equal to zero, so that the sum of the pitch moment equals zero. This simplifies data entry because the
user does not need to input moments of inertia with the vehicle’s mass properties. Vibrational effects are
also not considered in the loads analysis.

2.2 Method of Sections

The VLOADS program utilizes the Method of Sections to determine shear, moment, and axial
forces at any point for which a “node” has been defined. A “node” is defined every time the user defines
an X-station location in the “Mass.DAT” or “Aero.DAT” input sheets. Mass properties and/or aerody-
namic coefficients do not have to be specified for every node, and the user may input a zero-mass or
zero-coefficient value at any desired X-station to create a “node” of interest.

For shear and moment calculations, the loads analysis process begins at the aft-most node and
works forward. Note that the VLOADS program assumes that launch vehicle X-stations increase posi-
tively as you move upward from the base of the vehicle to the nosecone. If your coordinate system is
positive down instead of positive up, you will have to do a simple coordinate transformation to put your
X-stations in the correct ascending order from aft to nose. The shear and moment are defined as zero
at the aft-most point since the sum of all forces must be zero at the forward and aft ends of a vehicle in
free flight. Axial load calculations begin at the forward end of the vehicle.

Figure 2 and its related equations illustrate the Method of Sections as used in the VLOADS
program. The variablé- is the sum of all applied forces acting in the Z direction at noti®den+1
is assumed to be an infinitesimally small distance forward of X-statibherefore, the forces acting
at noden+1 are not taken into account until the next step—when netildecomes node The process
repeats itself until the last node is reached. Axial loads are calculated similarly, as shown in figure 3,
whereF , is the sum of all applied forces acting in the X direction at mode

2.3 Special Considerations for Launch Vehicles
A number of special considerations for launch vehicles have been incorporated into VLOADS.
2.3.1 Propellant Masses in Shear, Bending, and Axial Force Distributions

Propellant masses, for instance, must be handled differently for axial force calculations than
for shear and bending moment calculations. In the VLOADS program, all propellant masses are input
on the “Propellant.DAT” input sheet (app. B.4). For calculation of the shear and bending moment distribu-
tions, the VLOADS program will automatically distribute the propellant massesrgvaurhber
of X-stations, as specified by the user in the “Propellant. DAT” sheet. For calculation of the axial force distri-
bution, however, the propellant mass inertial forces which act in the X direction will only be reacted at a point
which must represent the aft bulkhead tangency in that propellant tank. Only the aft bulkheads can react
propellant inertial loads in the X direction, because the sidewalls of the propellant tanks do not support the
fluid in the X direction. Aft bulkhead tangency points are input by the user in the “Propellant.DAT” input
sheet, and the VLOADS program automatically handles redistribution pfdpellant masses to these aft
bulkhead tangency points for axial force distribution calculations during execution of the program.

4
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Figure 3. Method of Sections for axial force distribution calculations.
2.3.2 Line Loads

In addition to the shear, bending moment, and axial force distributions calculated by the pro-
gram, VLOADS will also calculate tensile and compressive line loads for output to the “Loads.OQUT”
data sheet and the “Loads.PLOT” graph. Line loads are measures of load intensity which are derived
from the stress equations for a monocoque shell with an applied axial force, pressure, and bending
moment. Line loads, measured in pounds per inch, are calculated by dividing the longitudinal
monocoque shell stress by a unit thickness. The equations for stress and line load in a thin-walled
cylinder under axial loads are given in table 1.



Table 1. Stresses and line loads in a thin-walled cylinder.

Cylinder With Thin Walls
Cross-sectional (C.S.) area=2mRt
Moment of inertia= TRt

Fluid Enclosed in Cylinder
Enclosed fluid area= TiR?
Fluid axial force=Pressure* TiR?

Axial Force
0, axial=Axial force/C.S. area=Axial force/(21tR1)

Line load N, ,..,= O, axial/t=Axial force/(21R)

Pressure, P
a, pressure=Fluid force/C.S. area=P(riR2)/(2mRH=(PR)/(21)
Line load Ny, eq5,r6= Oy Pressure/=PR/2

Moment

o, moment=Moment/Inertia=Moment/(TtR%t)

Line load N, oment= Ox moment/t=Moment/(TtR2)

2.3.3 Pressure Relief of Compressive Buckling Loads

The axial force distribution for launch vehicles is, for the most part, compressive in nature.
Compressive loads lead to buckling modes of structural failure. When determining the vehicle’s line
load distribution under compressive loads, the internal tank pressures must be taken into account be-
cause they have a load-relieving effect. The tank’s internal gauge pressure is tensile and effectively
reduces the axial longitudinal compressive load on the tank structure. Sometimes the pressure can
provide enough relief to actually place the tank in tension. It is generally good engineering practice
when determining ultimate compressive line loads to avoid multiplying load-relieving pressures or
tensile loads by an engineering safety factor. The VLOADS program gives the user the option to handle
relieving loads with or without safety factors. Section 5.5 contains more details.

2.3.4 Compressive/Tensile Bending Moments

In the axial load direction, bending moments act in compression on one side of the shell and in
tension on the other side. This phenomena is apparent in the final ultimate compressive line load and
ultimate tensile line load, equations (1) and (2), respectively. Moment in these equations is the absolute
value of the moment calculated in table 1. Compressive forces and line loads are negative in sign.
Tensile forces and line loads are positive in sign.

AxialForce Moment
2nR nmR?

Look at these equations carefully. For this load case, the axial force is assumed compressive, the pres-
sure load is assumed tensile, and the bending moment is both tensile and compressive.

: R
N Ultimate = SF.+(pressure)§— SF. Q)

AxialForce R Moment

U
i = —_— 2
N Ultimate = ———=— + %(preswre) R %SF. ()



3. GENERAL INFORMATION ABOUT THE VLOADS PROGRAM

The VLOADS program may be purchased from COSMIC, University of Georgia,
382 East Broad Street, Athens, GA 30602—-4272. COSMIC also has a site on the World Wide Web
at http://www.cosmic.uga.edu/.

The VLOADS program was developed as a Visual BASIC program in a Microsoft Excel work-
book. The “VLOADS” Microsoft Excel workbook contains five input worksheets, five input dialogs,
three output worksheets, and three modules which contain the 25 Visual BASIC macros and 3 Visual
BASIC functions which comprise the VLOADS program.

The “Aero.DAT” input worksheet contains discrete normal force coefficients per degree alpha
(angle-of-attack) and axial force coefficients with their accompanying locations in terms of X—Station/
Diameter (X/D) for the core vehicle only. This data is a product of aerodynamic analyses and will
change from one vehicle to the next, and from one Mach number to the next.

The “Mass.DAT” input worksheet contains discrete masses which represent the vehicle structure,
payload, avionics, engines, thermal insulation, power systems, and all other components. Propellant
mass properties are a special case. If the propellant is in a tank that is nonintegral to the vehicle struc-
ture, such as a reaction control system or orbital maneuvering system tank, then that propellant mass
should be input within “Mass.DAT.” However, if the propellant is in a tank that is integral to the vehicle
structure, like the main liquid oxygen (lox) and liquid hydrogenfLptopellant tanks in the space
shuttle’s external tank (ET), then that propellant mass should be input in the “Propellant. DAT” input
worksheet. The “Mass.DAT” sheet is also where the user may enter some zero-mass X-stations for other
locations on the vehicle where a loads output is desired, such as field splices and joints.

The “Propellant.DAT” input worksheet contains the propellant masses and pressures for all tanks
that are integral to the vehicle’s structure. Please read the paragraph above for more information on
integral versus nonintegral tankage.

The “Data.SORT” output worksheet contains the raw input data after it has been compiled
and sorted. It is useful for debugging should problems occur during program execution.

The “Loads.OUT” output worksheet contains the calculated load distributions. It is a sorted
listing of vehicle X-stations and their corresponding shear, bending moment, axial load, and line load
distributions.

The “Loads.PLOT” output worksheet contains a plot of the line load distributions versus
X-station. This plot is automatically updated every time that VLOADS is run. If the user desires to
create plots of the other load distributions, it is a simple matter to insert a new worksheet or chart on
which a new plot may be created. The Microsoft Excel user’s manuals and on-line help features can tell
you how to create graphs and plots. Note, however, that any new plots that the user should choose to
create will NOT automatically update each time that VLOADS is run. They must be manually updated
for each new run.



Other worksheets are hidden from the user, but may be accessed by using the “Format/Sheet/
Unhide...” command within Microsoft Excel (this feature was supported in Excel 5.0 for the Macintosh
and Excel 7.0 for Windows 95). The default data sheet (the data that is input via the dialog sheets when
VLOADS is run), the dialog sheets, and the Visual BASIC coding are all hidden from view for more
efficient operation and to provide a less cluttered work environment.

When the user clicks on the “RUN “VLOADS button on the “START” worksheet (app. B.1),
the VLOADS program will be executed and the user will have the opportunity to edit the vehicle proper-
ties not contained in the “Aero.DAT,” “Mass.DAT,” or “Propellant.DAT” input worksheets through a
series of dialog windows that will be displayed. The dialog windows are entitled:

* Program Control for the “VLOADS” Visual BASIC Program
* Edit Aerodynamic & Performance Parameters

* Edit Mass Parameters

* Edit Vehicle Geometry

« Edit Safety Factors.

VLOADS was developed as a Microsoft Excel 5.0 workbook program on a Power Macintosh
computer. It has also been tested and implemented on a 486-class PC computer using Microsoft Excel
7.0 for Microsoft Windows 95. VLOADS was developed in 1996, and the current version was released
to COSMIC, NASAs Software Technology Transfer Center, in 1997. The program is a copyrighted
work with all copyright vested in NASA.



4. EXAMPLE PROBLEM

The following example problem will be used to illustrate operation of the VLOADS program.
The vehicle under investigation is shown below. It consists of a 27.6-ft-diameter core stage derived from
the space shuttle’s ET with two redesigned solid rocket motors (RSRM'’s) as boosters. The payload
shroud diameter is 36 ft. The launch vehicle is illustrated in figure 4.

XL

XL 3774.28

/[l\ XL 3408.81
XL 3325.65

XL 2245.65

XL 2101.65
XL 1974.65

XL 1690.45
XL 1558.25
XL 1420.10

XL 485.25
XL 425.00

XL 167.00
YL

Figure 4. Example problem vehicle.

The structural loads are to be evaluated at the point of maximum dynamic pressure (Max Q).
All VLOADS data files and windows for this example problem will be shown in sections 4-6 and
appendices B-C.

Table 2 is a copy of the aerodynamic normal force coefficient input data, and table 3 represents
the axial force coefficient data. The reference diameter for this data is 331 in. and the reference area
is 607 f&.

The two sets of aerodynamic properties should be combined and input into one file, the
“Aero.DAT” input file. The completed “Aero.DAT” file can be found in appendix B.2. This data need
not be sorted into ascending order for entry into the “Aero.DAT” file.



Table 2. Coefficients for normal force aero- Table 3. Coefficients for axial force aero-

dynamic data (ref. area=6(.t dynamic data (ref. area=6(J.ft
X/D_ref Cna X/D_ref Axial Aero
(unitless) per degree (unitless) (Cd)
10.733 0.03380 11.3220 0.09670
10.145 0.02410 11.2977 0.20250
9.596 0.02160 10.6212 0.19540
8.860 0.01070 10.1523 0.03030
8.074 0.00440 6.8894 0.04310
7.309 0.00370 6.4147 0.12330
6.388 —-0.00790
5.943 -0.01090 Core Cd = 0.69130
5.447 —-0.00180 Booster Cd = 0.33600
4125 0.00480
1.693 0.01740 TOTAL Cd = 1.02730
Core Cn = 0.09990 D_ref=331 in.
Booster Cn = 0.07560
TOTAL Cn = 0.17550
D_ref=331 in.

With the aerodynamic data entered into the “Aero.DAT” file, we turn our attention to the launch
vehicle mass properties. The distributed mass properties of the core vehicle at Max Q is shown in
table 4.

Only the core mass properties in table 4 should be entered on the VLOADS “Mass.DAT”
input worksheet (app. B.3). Booster masses and propellant masses are not input through “Mass.DAT.”
Instead, booster masses will be input in a mass properties dialog (section 5.2) that you execute by click-
ing on a button when running the VLOADS program. The propellant masses will be entered in a
“Propellant.DAT” input sheet (app. B.4), which is similar to the propellant mass breakdown shown
in table 5.

To improve accuracy of the structural load calculations, masses which occupy a relatively large
volume, such as the lox, Lkor payload, should be broken up into smaller masses distributed over
several X-station locations. The more detailed the mass breakdown, the more accurate the results
Ideally, all the masses in the “Mass.DAT” file will be of the same order of magnitude. However, break-
ing some of the large masses into many smaller ones may be more trouble than its worth, depending on
the maturity of the launch vehicle’s design (preliminary design, detailed design, production, etc.) and the
level of fidelity that you desire in your analysis. One nice feature in VLOADS is that it will automati-
cally distribute the propellant masses from a starting X-station to an ending X-station, depending on the
number of divisions that you specify in the “Propellant.DAT” input sheet.

The user is now ready to update the default settings and parameters in VLOADS, and to run
the program to calculate structural loads.

10



Table 4. Mass properties for example problem.

Description Weight Xc.g.
(Ib) (ft)
Core
Shroud Nose 3,300 280.50
Shroud Door +Y 9,350 228.00
Shroud Door =Y 9,350 228.00
Strongback 28,000 219.00
Payload Adapter/ASE 10,600 182.00
Kickstage (Wet) 17,178 178.00
Payload +Y 58,110 219.00
Payload -Y 58,110 219.00
Transition Str. 7,090 176.00
Fwd ET Str. 3,832 167.00
Lox Tank & Subsystem 18,742 152.00
Intertank 16,162 129.00
LH, Tank & Subsystem 36,452 76.00
Aft & Thrust Str 16,701 27.00
Three SSME’s 20,887 8.00
Prop. Subsys. & Avion. 17,207 21.00
gox and Residuals 2,966 152.00
GH, and Residuals 1,238 76.00
Aft Residuals 5,557 21.00
Subtotal = 340,832 155.48
Propellants
Wp lox (Max Q) 1,274,764 148.00
Wp LH, (Max Q) 212,461 69.00
Subtotal = 1,487,225 136.71
Boosters
RSRB +Y (Max Q) 667,908 64.20
RSRB -Y (Max Q) 667,908 64.20
Subtotal = 1,335,816 64.20
TOTAL = 3,163,873 108.12

Table 5. Main propellant data for example problem.

Pressure Pressure Mass Mass No. of
Ullage From To Propellant From To X-Stations
Propellant Pressure X-Station X-Station Mass X-Station X-Station | to Distribute
Name (psig) (in.) (in.) (Ibm) (in.) (in.) Mass Over
Whp lox (Max Q) 20 1,690.45 1,974.65 1,274,764 1,558.25 2,101.65 5
Wp LH, (Max Q) 32 425.00 1,420.10 212,461 425.00 1,420.10 7
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5. RUNNING THE VLOADS PROGRAM

The most efficient way for the user to become familiar with the VLOADS program and the
methodology with which it calculates loads is to determine the structural loading for a sample launch
vehicle, such as the example vehicle described in section 4.

Before we can begin running VLOADS, we must make sure that a consistent coordinate system
will be used for data input. It is essential that the user maintain close vigilance over coordinate system
identification since they will receive data from several sources. The VLOADS program requires that the
X coordinate be in the direction of flight with the origin somewhere aft of the aft-most data point at the
bottom of the vehicle. Negative station numbers are not allowed. An origin of X=0 at the engine exit
plane is commonly used. Figure 5 shows the reference configuration of the core vehicle free body
diagram in the newly defined loads coordinate system.

)

T, Inertial Iéorces \
eAerodynamic Forces

\ \ IF '

Figure 5. Reference configuration of the core vehicle free body diagram.

After the coordinate system is established, the user should begin by inputting aerodynamic and
mass properties data in the “Aero.DAT” and “Mass.DAT” sheets. The data in these sheets is organized in
columns.Do not skip rows when inputting your dataecause VLOADS assumes that the first empty
row that it encounters marks the end of the data file. The VLOADS program reads the first four columns
of data in the “Aero.DAT” sheet down to the first blank row and reads the first three columns of data in
the “Mass.DAT” sheet down to the first blank row.

5.1 Inputting Aerodynamic Properties and Performance
Aerodynamic properties are input and stored on the “Aero.DAT” worksheet. To view the
“Aero.DAT” input worksheet, you can (1) click the “Input Aero Data & Edit Performance” button on the

“START” worksheet (app. B.1) within the “VLOADS” workbook or (2) click on the “Aero.DAT” tab
that appears at the bottom of the “VLOADS” Excel workbook (this feature was supported in Excel 5.0
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for the Macintosh and Excel 7.0 for Windows 95). Appendix B.2 includes a copy of the “Aero.DAT”
input worksheet that was created from the aerodynamic data provided for the example vehicle in
section 4.

Please note that the VLOADS program will run without aerodynamic loads, if the user should
choose to leave the “Aero.DAT” input worksheet blank due to insufficient data, or in case he is modeling
an upper stage or planetary transfer vehicle that does not experience atmospheric loads. It is highly
recommended that aerodynamic data be included for atmospheric vehicles because it is a significant
contributor to the launch vehicle’s structural loads.

The “Aero.DAT” file contains discrete normal coefficients per degree alpha (angle of attack)
and drag coefficients with their accompanying locations in terms of X/D for the core vehicle. Aerody-
namicists like to output aerodynamic forces in terms of X/D (X-station over a reference diameter)
because aerodynamic data in this format will be valid for the launch vehicle even if it has to be photo-
graphically resized to a smaller or larger shape during design. The reference diameter, which the user
is prompted for in the “Edit Aerodynamic & Performance PARAMETERS” window, is used to convert
X/D locations to X-stations within the VLOADS Program.

Distributed aerodynamic coefficients only need to be input for the core of the launch vehicle
because VLOADS only calculates loads distributions for the core launch vehicle. Boosters are treated
as separate entities and the user will be prompted for summary booster information such as weight,
thrust, and total normal force coefficient when they click on the “Edit Aerodynamic & Performance
PARAMETERS” button on the “Aero.DAT” worksheet.

After the aerodynamic Cna and Cd data versus X-station is input, the user should then click on
the “Edit Aerodynamic & Performance PARAMETERS” button on the “Aero.DAT” worksheet. A dialog
box will pop up in a new window, and it will prompt the user for input. The “Edit Aerodynamic and
Performance PARAMETERS” window is shown in figure 6.

The units of measurement to which the data must conform are listed with each item. If no units
are given, the item is dimensionless. The “Total Booster Normal Force Coefficient” refers to the sum
of all booster coefficients. This may require additional input from the aerodynamicist since leeward
boosters may be blanked from the flow and thus experience a reduction in normal force coefficient. The
other entries are self-explanatory. The user may use the mouse or “TAB” key to move from edit field to
edit field. When the user is satisfied with the data entries, click “Continue” to return to the “Aero.DAT”
sheet.

If the sum of the core normal force coefficients contained in the “Aero.DAT” file plus the
booster normal force coefficient input in the dialog box does not equal the total vehicle normal force
coefficient, which is also input in the dialog box as a checksum, within 0.1 percent, an error message
will appear when VLOADS is run.
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Edit Aerodynamic & Performance PARAMETERS

|ﬁEFlOD‘r'r-lAI'u'IIG FaRAMETERS: |

The DETAILED Total Launch Yehicle [Intsgrated Stack]
Aerodynamic
PROFERTIES (Cna & Cd | Stack Normal Force Coeff. {checksum) [0.1756 [ |
wersus Fostation) are

located on the Stack Center of Pressure {in) |21 17.97 |
"Aaro. DAT" sheet.

Stack Drag Coefficient [1.0273 |

Booatara [if he wshicle has Hhem]

Total Booster MNormal Force Coefficient |D.EI'.-‘5E~ |

Core of the Launch Wehicle

derodynamic Reference Area {sq. 1) |E.IZI'.-' |

fero Reference Diameter (in) |331 |

FERFORMARNCE PARAMETERS: |

Dynamic Pressure | psf) 717 |
Angle of Attack () |6 |
Total Thrust of Stack (1bs) |6,242,275 |
Core Yehicle Thrust (1hs) 1,676,499 |

Figure 6. “Edit Aerodynamic & Performance PARAMETERS” dialog box.

5.1.1 “No Booster” Case

If the user’s launch vehicle does not have boosters, the user should input a zero value in the
“Total Booster Normal Force Coefficient” input box. The user should also input a zero value for the
“Total Mass of Boosters” input that appears in the “Edit Mass PARAMETERS” dialog, shown later
in figure 7. VLOADS will then run a “No Booster” case to determine launch vehicle loads.

5.1.2 “Winged Vehicle” or “Zero Thrust Attachments” Case
If the user would like to model a launch vehicle with wings, it is possible to treat the wings as

zero-thrust boosters. For a winged vehicle, the user should make the total thrust of the stack equal to the
core vehicle thrust in the “Edit Aerodynamic & Performance PARAMETERS” dialog. In figure 6, if we
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were to model wings that had the same aerodynamic and mass properties as our boosters, we would
input 1,674,499 |b for both “Total Thrust of Stack” and “Core Vehicle Thrust.”

After all of the aerodynamic data and performance parameters are input in the “Aero.DAT”
worksheet and “Edit Aerodynamic & Performance PARAMETERS” dialog, the user should return to the
“START” worksheet by (1) clicking the “Go to START Sheet” button or (2) clicking on the “START”
tab that appears at the bottom of the “VLOADS” Excel workbook (this feature was supported in
Excel 5.0 for the Macintosh and Excel 7.0 for Windows 95).

5.2 Inputting Mass Properties

Mass properties are input and stored on the “Mass.DAT” worksheet. To view the “Mass.DAT”
worksheet, you can (1) click the “Input Mass Properties” button on the “START” worksheet (app. B.1)
within the “VLOADS” workbook or (2) click on the “Mass.DAT” tab that appears at the bottom of the
“VLOADS” Excel workbook (this feature was supported in Excel 5.0 for the Macintosh and Excel 7.0
for Windows 95). Appendix B.3 includes a copy of the “Mass.DAT” worksheet that was created from
the mass properties data provided for the example vehicle in section 4.

The “Mass.DAT” sheet contains discrete masses which represent the core vehicle structure,
payload, avionics, electronics, thermal protection system, and any other points of interest not already
defined. Edit the “Mass.DAT” sheet in the same manner as the “Aero.DAT” sheet. Comments may be
added to clarify your input data in the fourth column. Do not input mass properties for the boosters or
for any of the main propellants that are in tanks which are load-bearing and integral with the vehicle’s
outside skin. Reaction Control System (RCS) propellants, Orbital Maneuvering System (OMS) propel-
lants, and any other propellants in tanks which are nonintegral to the vehicle’s outside skin should still
be input in the “Mass.DAT” sheet. Booster mass properties will be input in the “Edit Mass PARAM-
ETERS” dialog and main propellant mass properties will be input in the “Propellant.DAT” input sheet.

The user may also add reference X-stations to the mass properties input by entering zero for the
mass of any X-station numbers of interest which do not have an associated lumped mass. The user
should include reference X-station locations with a mass of zero for the following points of interest:

* Aft propellant tank dome tangencies

» Forward propellant tank dome tangencies
* Aft booster attach point, if any

» Forward booster attach point, if any

* Engine gimbal point

* Any other point of interest.

In addition, your output data will be clearer and more accurate if additional station numbers
and zero masses are inserted just before (-1 in.) and just after (+1 in.) all major points of interest.
We highly recommend that you adhere to this pracBtease refer to the example “Mass.DAT” sheet
in appendix B.3 to see one example of how this can be done.
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After mass properties versus X-station are input, the user should click the “Edit Mass PARAM-
ETERS” button on the “Mass.DAT” worksheet. A dialog box will pop up in a new window, and it will
prompt the user for input. The “Edit Mass PARAMETERS” window is shown in figure 7.

k——————— Edit Mass PARAMETERS

The DETAILED Mazs Tatal Mass of Stack {checksum) 1bs.
FROPERTIES (Mass wersus X-
station) are located on the . .
"tdazs. DAT" sheet, Boostars [if e wahicla has fham]
Total Mass of Boosters |1,335,51¢6 | 1bs.
CG of Boosters |770.4 | in.

Figure 7. “Edit Mass PARAMETERS” dialog box.

5.2.1 “No Booster” Case

If the user’s launch vehicle does not have boosters, the user should input a zero value in the
“Total Mass of Boosters” input box. VLOADS will then run a “No Booster” case to determine launch
vehicle loads.

If the sum of the core vehicle masses in the “Mass.DAT” file and the booster mass entered in the
“Edit Mass Properties” window does not equal the total vehicle stack mass that was input in the window
as a checksum within 0.1 percent, an error message will occur. The message will display the total core
vehicle weight (i.e., the sum of all masses in the “Mass.DAT” file), the recorded booster weight, and the
recorded total vehicle weight. The program will then prompt the user for corrective measures.

After all of the mass properties and parameters are input in the “Mass.DAT” worksheet and
“Edit Mass PARAMETERS?” dialog, the user should return to the “START” worksheet by (1) clicking
the “Go to START Sheet” button or (2) clicking on the “START” tab that appears at the bottom of the
“VLOADS” Excel workbook (this feature was supported in Excel 5.0 for the Macintosh and Excel 7.0
for Windows 95).

5.3 Inputting Main Propellant Masses and Pressures

Propellant masses and pressures for integral, load-bearing tankage are input and stored on the
“Propellant. DAT” worksheet. To view the “Propellant.DAT” input worksheet, you can (1) click the
“Input Ascent Propellants” button on the “START” worksheet (app. B.1) within the “VLOADS” work-
book or (2) click on the “Propellant. DAT” tab that appears at the bottom of the “VLOADS” Excel
workbook (this feature was supported in Excel 5.0 for the Macintosh and Excel 7.0 for Windows 95).
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Appendix B.4 includes a copy of the “Propellant.DAT” input worksheet that was created from the
propellant data provided for the example vehicle in section 4.

Propellant masses must be handled differently for axial force calculations than they are for shear
and bending moment calculations. For calculation of the shear and bending moment distributions, the
VLOADS program will automatically distribute the propellant masses avanimber of X-stations, as
specified by the user in the “Propellant. DAT” sheet. The discrete masses of propellant that are distrib-
uted through the tank may be thought of as slices or, more accurately, discs of propellant. After calculat-
ing the shear and bending moment distributions with the distributed propellant mass, VLOADS will
make another automatic adjustment. For calculation of the axial force distribution, the propellant mass
inertial forces which act in the X direction will only be reacted at a point which must represent the aft
bulkhead tangency in that propellant tank. Only the aft bulkheads can react propellant inertial loads in
the X direction because the sidewalls of the propellant tanks do not support the fluid in the X direction.
Aft bulkhead tangency points are input by the user in the “Propellant.DAT” input sheet, and the
VLOADS program automatically handles redistribution of the propellant to these aft bulkhead tangency
points for axial force distribution calculations during execution of the program.

After all of the propellant masses and pressures from integral, load-bearing tankage are input
in the “Propellant. DAT” worksheet, the user should return to the “START” worksheet by (1) clicking
the “Go to START Sheet” button or (2) clicking on the “START” tab that appears at the bottom of the
“VLOADS” Excel workbook (this feature was supported in Excel 5.0 for the Macintosh and Excel 7.0
for Windows 95).

5.4 Inputting Vehicle Geometry

To input vehicle geometry such as launch vehicle radii versus X-station, forward and aft booster
attachment points, and the engine gimbal point (usually considered to be the point of thrust application),
the user should click on the “Edit Geometric Parameters” button on the “START” worksheet (app. B.1).
A dialog box will pop up in a new window, and it will prompt the user for input. The “Edit Vehicle
Geometry” window is shown in figure 8.

The booster thrust loads are assumed to act at the same X-station as the core vehicle thrust. The
forward attach point is assumed to carry X, Y, and Z direction loads, while the aft attach is assumed to
transmit Y and Z direction loads only. Recall that the VLOADS program is a two-dimensional tool so
that only information in the X—Z plane is input or output. If a vehicle aft booster attach is used to carry
X,Y, and Z loads and the forward attach used to carry Y and Z loads then simply input the X-station for
the aft interface in the “Fwd Booster Attach Location” edit field, and vice versa.

The user may also identify up to 10 changes in radius along the vehicle. If you should choose to
input fewer than 10 radii points, you may duplicate some of your data points to complete the field of 10.
The radii that you enter are only used in the calculation of the tensile and compressive line load distribu-
tions. They are not used in any other calculation. When calculating line loads, the VLOADS program
will use a simple linear interpolation of the radii data to determine what radius to use at a particular
X-station location.
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=———————— Edit Dehicle Geometry
ﬁ =
Idsntify Up to 10 Radii Ereaks
More Launch Wehicle X-station data is listed on . . .
both the "Aero.DAT" and "Mass.DAT" wonksheets, X station Radius (in)
{0.00 I EEEE
{16700 | [12500 |
Boostera [if boosters are attachead) |425_|:||:| | |331_2|:| |
Fwi Booster Attach Location (in) |1,4z0010 | [331.20 |
Aft Booster Attach Location (in) II’EQD'% | |331 20 |
[1,97465 | [331.20 |
Frepulsion [z,10165 | [33120 |
Point of Thrust &pplication {in) I2 SAC BE | |432.DD |
|3,325.65 | [43z2.00 |
|3,774.25 | [zo00 |

Figure 8. “Edit Vehicle Geometry” dialog box.

5.5 Inputting Safety Factors

To input safety factors and uncertainty factors, the user should click on the “Edit Safety Factors”
button on the “START” worksheet (app. B.1). A dialog box will pop up in a new window, and it will
prompt the user for input. The “Edit Safety Factors” window is shown in figure 9.

Edit fields are provided for inputting multiplication factors to increase the bending moment and
axial loads to account for uncertainty in the load environment. These increases are reflected in the
bending moment and axial loads, as well as the line loads. An uncertainty factor of 1.3 or more for the
bending moment is generally accepted to account for dynamic pressure excursions, angle-of-attack
exceedances, vehicle aeroelastic effects, etc. If performance modeling of the vehicle trajectory indicates
that all or most of this 30 percent will be “eaten up” by dynamic pressure and angle-of-attack excursions
alone, the factor should be increased accordingly. Engineering judgment and historical precedent are the
rule here. For axial loads, an uncertainty factor of 1.05 to 1.15 is usually sufficient. Axial load multipli-
cation factors are applied to the vehicle axial loads to account for dynamic pressure excursions, engine
thrust above 100 percent, dynamic effects, etc. Large instantaneous changes in vehicle mass, such as
booster separation, may warrant a higher multiplication factor.

The safety factor is only used in the calculation of the compressive and tensile line loads. All
other loads in the “Loads.OUT” sheet are output as limit loads that are not multiplied by a safety factor.
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Edit Safety Factors

|SAFET‘r‘ FACTORS for e Ho & Ht Line Loadsa: |

Uncertainty Factor for Bending Maments 1.30
Uncertainty Factar for Axial Loads 1.05
UNtimate Safety Factor (SF)

[<] Do not apply Safety Factor to “reliewing” loads.
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Figure 9. “Edit Safety Factors” dialog box.

The axial force distribution of a launch vehicle is, for the most part, compressive in nature.
Compressive loads lead to buckling modes of structural failure. When determining the vehicle’s line
load distribution under compressive loads, tensile loads like internal tank pressures or positive bending
moments must be taken into account because they have a load-relieving effect. Consider tank gauge
pressure. Normally, the tank’s internal gauge pressure is tensile and effectively reduces the axial com-
pressive load on the tank structure. Sometimes, the pressure can provide enough relief to actually place
the tank in tension. However, since the pressure is a relieving load, it is generally good engineering
practice when determining ultimate compressive line loads to avoid multiplying pressures by an engi-
neering safety factor. The VLOADS program gives the user the option to handle pressure-relieving loads
with or without safety factors by clicking on the check box in the “Edit Safety Factors” dialog (fig. 9).

5.6 Starting VLOADS Program Execution
After the user inputs all of the vehicle’s data in the input worksheets and dialog boxes, it is time
to run the VLOADS program. To run VLOADS, click on the “RUN “VLOADS" button on the

“START” worksheet (app. B.1). The first dialog box to appear will be the “Program Control for the
“VLOADS” Visual BASIC Program” window, as shown in figure 10.
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Frogram Control for the "ULoads" Wisual BASIC Program

INFUT PARAMETERS:

{0 Edit Aerodynamic & Performance Parameters
{1 Edit Mazs Parameters
{7 Edit Geometry

{7 Edit Safety Factors

(@ EXECUTE PROGRAM
[ Hide Data SORT worksheet after execution.

(=] Run without informational message boxes.

Figure 10. “Program Control for the “VLOADS” Visual BASIC Program” dialog box.

The “Program Control” window allows the user to execute the VLOADS Visual BASIC code.
The user may also navigate through the edit windows again to check or edit the input parameters.
To edit a set of properties, simply select that line item and click “OK.” The user will be returned
to the “Program Control” window after editing each of the data sets listed.

The “Program Control” window also includes check boxes for “Hide Data.SORT worksheet after
execution” and for “Run without informational message boxes.” Running with messages will cause a
message box to appear on the screen when certain key data points are encountered by the program, suc
as the gimbal point and the forward and aft booster attach points. If these points are not encountered, the
shear, moment, or axial load curves will not close. It is advisable to run with messages turned on for the
first run to assist in verifying that all necessary inputs have been entered.

To run VLOADS, the user should select “Execute Program,” and click “OK.” This will run the
portion of the Visual BASIC code which actually calculates the vehicle’s structural load distributions.
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6. ANALYSIS RESULTS

When VLOADS finishes calculating structural loads and completes its run, the output data
will be stored in three worksheets. The “Data.SORT” worksheet will contain a sorted data deck of the
“Aero.DAT,” “Mass.DAT,” and “Propellant.DAT” sheets. The “Loads.OUT” worksheet will contain
a table of the calculated vehicle loads, and the “Loads.PLOT” sheet will contain a plot of the structural
line loads versus X-station.

6.1 The “Data.SORT"” Sheet

The “Data.SORT” sheet for the example problem is shown in appendix C.1. The VLOADS
program combines the raw, unsorted data from the “Aero.DAT,” “Mass.DAT,” and “Propellant. DAT”
input worksheets into one data set, sorts it, and then writes the sorted data to the “Data.SORT”
worksheet. This data is then reread to form the overall data set for loads analysis. Loads will be
generated for each data point in the “Data.SORT” sheet.

The “Data.SORT” worksheet also contains the results of some internal calculations, such as the
core vehicle center of gravity; the center of pressure, the total aerodynamic forces in pounds; booster
interface loads, if any, and the calculated vehicle accelerations. The “Data.SORT” worksheet is useful
for debugging if a problem is experienced.

To verify that the loads model was set up correctly, and to check for discrepancies, the center
of gravity should be checked by hand or compared to the mass properties statement. Also, the total mass
should be verified against the mass properties statement, and the axial and lateral accelerations should b
verified against the performance data. The totals of the aerodynamic properties should be verified by
comparison with the table of aerodynamic properties generally provided by the aerodynamicist. Booster
interface forces, if any, may be checked by hand through a simple free body diagram and summation of
forces and moments. The interface forces represent the total interface loads for all of the boosters to-
gether. Any further detailed analysis of interface loads, as might result from a booster being partially
blanked by the core, must be done by hand.

6.2 The “Loads.OUT” File

The “Loads.OUT” sheet for the example problem is shown in appendix C.2. It contains a series
of column headings and the tabulated vehicle IoBlds.most important item to verify is that the shear,
bending moment, and axial load distributions have all “closed,” meaning that their values must be zero
at both ends of the vehicl€he curves must close for a vehicle in free flight. If the values are relatively
small (i.e., <10), they can be assumed to be zero. The most likely cause for nonclosing curves is that a
key X-station, such as the fuel tank bulkhead tangencies; booster interface locations; or engine gimbal
point, was not entered into the “Mass.DAT” sheet and was therefore not encountered during program
execution.
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After inspecting the “Loads.OUT” sheet, the structural loads data versus X-station can be
copied, pasted, and plotted in CricketGraph, Microsoft Excel, or another graphing program. When
plotting, check the shear curve to see if any large load changes occurred in the proper locations. Engine
thrust and interface loads produce large changes in the shear curve. The axial load curve may also be
plotted and inspected in the same manner. Large concentrated masses (e.g., main propellant masses like
lox and LH,), in-line propellant tank pressures, interface loads, and engine thrust loads all cause abrupt
changes in the axial load curve. It would be wise for the user to familiarize themselves with the genera-
tion of shear and bending moment diagrams as described in any introductory structures or mechanics
of materials text. The rules governing the shear and moment diagrams of beams apply here.

It is often very useful to speak of structural loads in terms of line loads. A line load is a measure
of load intensity determined as if the moment, pressure, and axial load were all acting on a monocoque
cylinder of radiuR. Abrupt changes in the line load curves are caused by abrupt changes in the moment
and axial loads, as well as internal pressure changes (psig). The line load is valuable in comparing load
cases to determine structural load drivers and for assessing vehicle capability. Section 2.3 discusses line
loads in more detail.

6.3 The “Loads.PLOT" File

The VLOADS program automatically plots the compressive and tensile line loads for the vehicle
on the “Loads.PLOT” worksheet. The “Loads.PLOT” chart for the example problem is shown in
figure 11 and again in appendix C.3.

In figure 11, positive values for line load indicate tension while negative values indicate
compression. It is apparent from the plot that the line loads close, converge to zero, at the aft end of the
vehicle (X=96 in.) and at the forward end of the vehicle (X=3,774.28 in.). Remember that the loads must
close to zero at both ends of a vehicle in free flight. The abrupt changes, or “spikes,” in the line load
curves are due to concentrated masses (the lox apgrodellant masses), propellant tank pressures
(LH, from X=425 to X=1,420.10 in., and lox from X=1,690.45 to X=1,974.65 in.), interface loads,
and the engine thrust loads.

Figure 11 shows the Max Q line loads for our example vehicle. Other ascent load sets that could
have been run and plotted include liftoff, booster separation, main engine cutoff, and the time step at
which the vehicle experiences maximum lateral acceleration. If these other load sets had been run, their
line loads could have been plotted against the Max Q line loads in figure 11 to help the structural de-
signer and analyst determine which load sets would be the design drivers causing the highest and most
significant structural loads along various sections of the launch vehicle’s structure.

22



Line Load (Ib/in.)

10,000

8,000

6,000

4,000

2,000

-2,000

-4,000

Line Load Versus Vehicle X-Station

Nt = Tensile Line Load
Nc = Compressive Line Load

T ign Convention
— Tension +, Compression —

——UT. Nt (Ib/in.)

L]
——

1 ==Uit. Nc (Ib/in.)

{ r:mw

500

1,000 1,500 2,000 2,500 3,000 3,500

X-station (in.)

Figure 11. Plot of line loads for the example problem.
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7. CONCLUDING REMARKS

The VLOADS program provides the user with an analysis tool for the prediction of structural
loads for in-flight launch vehicles, or for other vehicles like upper stages and planetary transfer vehicles.
VLOADS may be purchased from COSMIC, University of Georgia, 382 East Broad Street, Athens, GA
30602-4272. COSMIC also has a site on the World Wide Web at http://www.cosmic.uga.edu/.

An attractive feature of the VLOADS program is that its Visual Basic source code has been
integrated into an easy-to-use Microsoft Excel user interface. The VLOADS program uses the individual
Excel worksheets in its Excel workbook as input and output data files in a manner that is very similar to
the way that more traditional FORTRAN and BASIC programs have used text files as input and output
files in the past. But, because VLOADS has been integrated into an Excel workbook, it is much easier
for the user to edit the input data, to run the program, and to view the results than in more traditional
FORTRAN and BASIC engineering codes. The use of Excel also allows the user to perform pre- and
post-procession calculations directly within the data file.

The major strength of this program is that it enables quick turnaround analysis of structural loads
for launch vehicles during the preliminary design phase of the vehicle’s developmental lifecycle. This
represents a vast improvement over the alternative—the time-consuming and expensive chore of devel-
oping finite element models for detailed loads analysis. In preliminary design, much remains unknown
about the detailed configuration to which the launch vehicle will mature.

As with other computer tools, the accuracy of the VLOADS analysis is very much dependent
upon the accuracy of the input data, as well as the simplifying assumptions built into the program’s loads
analysis methodology. Solution results, such as interface loads and accelerations, should always be
checked for accuracy by hand to ensure that no erroneous data has been entered.

The major shortcoming of this program is its inability to handle a 3- or 6-degree-of-freedom
(DOF) analysis. The program can be easily altered to conduct a 3-DOF analysis. This type of analysis
would also require a controls study be performed for the vehicle to determine accurate angles of attack,
engine gimbal angles, and vehicle rotational velocities. This type of analysis usually requires a much
more extensive trajectory analysis than the point mass trajectories run to supply the performance data
for the example problem here. If the user desires a 4- or 6-DOF analysis, he/she may break the analysis
into pitch plane and yaw plane and combine the two cases by superposition.
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APPENDICES

FREE BODY DIAGRAM AND VLOADS 1.4 INPUT AND OUTPUT FILES

Screen prints of the VLOADS 1.4 input and output screens for the example problem in section 4
are included in these appendices.
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APPENDIX A—Free Body Diagram and Sum of Force Equations
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APPENDI X B—Input Data Files for the Example Problem

B.1“START” Worksheet
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B.2 “Aero.DAT”
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B.3 “Mass.DAT”
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B.4 “Propelant.DAT”
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APPENDI X C—Output Data Files for the Example Problem

VLoads 1.3.5

by Bart Graham and Paul L. Luz of NASA MSFC / PD21.

C.1 “Data.SORT”

Copyright ©1997 National Aeronautics and Space
Administration. No copyright claimed in USA under
Title 17, U.S. Code. All other rights reserved.

Project =

Load set =
at time =
Analyst =
Date =

EXAMPLE LAUNCH VEHICLE PROBLEM

(VLOADS User's Manual, pending publication as NASA Tech. Memorandum)
Maximum Dynamic Pressure (Max Q)

unspecified

Bart Graham and Paul Luz

Nov. 1997

Aero elements = 17
Dry mass elements = 44
Fluid mass elements = 12

SORTED DATA: Aerodynamics, Mass Properties, and Ascent Propellants
X sta Cna Cd Mass Pressure JComments
(inches) (Ilbm) (psig)
96.00 0.00000 0.00000 20,887.00 3 SSME engines
166.00 0.00000 0.00000 0.00 (( zero-mass for improved calculations & plots)
167.00 0.00000 0.00000 0.00 Approx. engine gimbal plane from drawing.
168.00 0.00000 0.00000 0.00 (( zero-mass for improved calculations & plots)
252.00 0.00000 0.00000 17,207.00 Prop Subsys & Avionics
252.00 0.00000 0.00000 5,557.00 Aft Residuals
324.00 0.00000 0.00000 16,701.00 Aft & Thrust Structure
424.00 0.00000 0.00000 0.00 (( zero-mass for improved calculations & plots)
425.00 0.00000 0.00000 0.00 32.00dWp LH2 (Max Q) pressure/ Aft LH2 Tank Bulkhead
425.00 0.00000 0.00000 30,351.57 32.00dWp LH2 (Max Q) pressure/ Wp LH2 (Max Q) mass
426.00 0.00000 0.00000 0.00 32.00dWp LH2 (Max Q) pressure/ (( zero-mass for improved calculations & plots)
485.25 0.00000 0.00000 0.00 32.00dWp LH2 (Max Q) pressure/
560.25 0.01740 0.00000 0.00 32.00dWp LH2 (Max Q) pressure/ Normal aero (Table 1)
590.85 0.00000 0.00000 30,351.57 32.00dWp LH2 (Max Q) pressure/ Wp LH2 (Max Q) mass
756.70 0.00000 0.00000 30,351.57 32.00dWp LH2 (Max Q) pressure/ Wp LH2 (Max Q) mass
912.00 0.00000 0.00000 36,452.00 32.00dWp LH2 (Max Q) pressure/ LH2 Tank & Subsystems
912.00 0.00000 0.00000 1,238.00 32.00dWp LH2 (Max Q) pressure/ Gaseous H2 & Residuals
922.55 0.00000 0.00000 30,351.57 32.00dWp LH2 (Max Q) pressure/ Wp LH2 (Max Q) mass
1,088.40 0.00000 0.00000 30,351.57 32.00dWp LH2 (Max Q) pressure/ Wp LH2 (Max Q) mass
1,254.25 0.00000 0.00000 30,351.57 32.00dWp LH2 (Max Q) pressure/ Wp LH2 (Max Q) mass
1,365.31 0.00480 0.00000 0.00 32.00dWp LH2 (Max Q) pressure/ Normal aero (Table 1)
1,419.00 0.00000 0.00000 0.00 32.00dWp LH2 (Max Q) pressure/ (( zero-mass for improved calculations & plots)
1,420.10 0.00000 0.00000 0.00 32.00dWp LH2 (Max Q) pressure/ Forward LH2 Tank Bulkhead
1,420.10 0.00000 0.00000 30,351.57 32.00dWp LH2 (Max Q) pressure/ Wp LH2 (Max Q) mass
1,421.00 0.00000 0.00000 0.00 (( zero-mass for improved calculations & plots)
1,548.00 0.00000 0.00000 16,162.00 Intertank
1,558.25 0.00000 0.00000 0.00
1,558.25 0.00000 0.00000 254,952.80 Wp LOX (Max Q) mass
1,690.00 0.00000 0.00000 0.00 (( zero-mass for improved calculations & plots)
1,690.45 0.00000 0.00000 0.00 20.00fWp LOX (Max Q) pressure/ Aft LOX Tank Bulkhead
1,691.00 0.00000 0.00000 0.00 20.00pWp LOX (Max Q) pressure/ (( zero-mass for improved calculations & plots)
1,694.10 0.00000 0.00000 254,952.80 20.00dWp LOX (Max Q) pressure/ Wp LOX (Max Q) mass
1,802.86 -0.00180 0.00000 0.00 20.00jWp LOX (Max Q) pressure/ Normal aero (Table 1)
1,824.00 0.00000 0.00000 18,742.00 20.00jWp LOX (Max Q) pressure/ LOX Tank & Subsystems
1,824.00 0.00000 0.00000 2,966.00 20.00pWp LOX (Max Q) pressure/ Gaseous O2 & Residuals
1,829.95 0.00000 0.00000 254,952.80 20.00dWp LOX (Max Q) pressure/ Wp LOX (Max Q) mass
1,965.80 0.00000 0.00000 254,952.80 20.00dWp LOX (Max Q) pressure/ Wp LOX (Max Q) mass
1,967.10 -0.01090 0.00000 0.00 20.00jWp LOX (Max Q) pressure/ Normal aero (Table 1)
1,974.00 0.00000 0.00000 0.00 20.00jWp LOX (Max Q) pressure/ (( zero-mass for improved calculations & plots)
1,974.65 0.00000 0.00000 0.00 20.00Wp LOX (Max Q) pressure/ Forward LOX Tank Bulkhead
1,975.00 0.00000 0.00000 0.00 (( zero-mass for improved calculations & plots)
2,004.00 0.00000 0.00000 3,832.00 Forward ET Structure
2,101.65 0.00000 0.00000 0.00 Begin transition from ET-type stage to payload.



2,101.65
2,112.00
2,114.26
2,123.27
2,136.00
2,184.00
2,245.65
2,280.39
2,419.41
2,627.00
2,628.00
2,628.00
2,628.00
2,629.00
2,672.46
2,736.00
2,736.00
2,932.79
3,176.14
3,325.65
3,357.96
3,360.41
3,366.00
3,408.81
3,515.62
3,552.52
3,739.54
3,747.58
3,774.00
3,774.28

SUM

TOTAL

0.00000
0.00000
-0.00790
0.00000
0.00000
0.00000
0.00000
0.00000
0.00370
0.00000
0.00000
0.00000
0.00000
0.00000
0.00440
0.00000
0.00000
0.01070
0.02160
0.00000
0.02410
0.00000
0.00000
0.00000
0.00000
0.03380
0.00000
0.00000
0.00000
0.00000

core Cna
0

Aero.
Norm. force
-260,870

0.00000
0.00000
0.00000
0.12330
0.00000
0.00000
0.00000
0.04310
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.03030
0.00000
0.00000
0.19540
0.00000
0.20250
0.09670
0.00000
0.00000

core Cd
1

Aero.
Drag force
-300,867

C.1 “"Data.SORT” (Continued)

254,952.80
7,090.00
0.00

0.00
17,178.00
10,600.00
0.00

0.00

0.00

0.00
28,000.00
58,110.00
58,110.00
0.00

0.00
9,350.00
9,350.00
0.00

0.00

0.00

0.00

0.00
3,300.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

Mass
1,828,057.00

Ibs.

Wp LOX (Max Q) mass

Transition Structure

Normal aero (Table 1)

Axial aero (Table 2)

Kickstage (Wet)

Payload Adapter / ASE

Bottom of Payload Shroud

Axial aero (Table 2)

Normal aero (Table 1)

(( zero-mass for improved calculations & plots)
Strongback

Payload +Y

Payload -Y

(( zero-mass for improved calculations & plots)
Normal aero (Table 1)

Shroud Door +Y

Shroud Door -Y

Normal aero (Table 1)

Normal aero (Table 1)

Top of Payload Shroud / Base of Nosecone.
Normal aero (Table 1)

Axial aero (Table 2)
Shroud Nose

Axial aero (Table 2)
Normal aero (Table 1)
Axial aero (Table 2)
Axial aero (Table 2)

Tip of Launch Vehicle from drawing.

Total Core Vehicle Mass = 1,828,057
Core vehicle CG = 1,731.17

Core vehicle CP = 2,969.08
Total vehicle CP = 2,117.97

Vehicle Normal Force Coeff = 0.17560 (core + boosters)
Vehicle Drag Force Coeff = 1.02730 (core + boosters)

CoreNormalAeroForce = -260,870.27

Multiple Boosters (2,4,6,8,etc.) are attached to the launch vehicle.
Aft Interface Iz = -161,878.5

Fwd Interface Iz = 60,817.4

Fwd Interface Ix = 1,970,329.1

THRUST OF THE CORE

Axial Thrust (assumed = input ThrustCore) = 1,674,381.0
Lateral Thrust, TzCore = -84,238.1

Engine gimbal angle (for 0 pitch moment) = -2.88 degrees.
Magnitude of the engines' thrust = 1,676,498.7

Sum of the Moments = 0.0000
Sum of Forces in Z (lateral) = 0.0000
Sum of Forces in X (axial) = 0.0000

Axial acceleration = 1.8292 g's (Earth).
Lateral acceleration = -0.2441 g's (Earth).
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C.2 “Loads.OUT” (Continued)
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Line Load (Ib/in.)

C.3 “Loads.PLOT”

Line Load Versus Vehicle X-Station

10,000 T
: Nt = Tensile Line Load
| Nc = Compressive Line Load
—tt ) '
8,000 4+ Sign Convention
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i |
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